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The displacement of a three-dimensional immiscible droplet subject to gravitational
forces in a duct is studied with the lattice Boltzmann method. The effects of the
contact angle and capillary number (the ratio of viscous to surface forces) on droplet
dynamics are investigated. It is found that there exists a critical capillary number for a
droplet with a given contact angle. When the actual capillary number is smaller than
the critical value, the droplet moves along the wall and reaches a steady state. When
the capillary number is greater than the critical value, one or more small droplets
pinch off from the wall or from the rest of the droplet, depending on the contact
angle and the specific value of the capillary number. As the downstream part of the
droplet is pinching off, a bottleneck forms and its area continues decreasing until
reaching zero. The general trend found in a previous two-dimensional study that the
critical capillary number decreases as the contact angle increases is confirmed. It is
shown that at a fixed capillary number above the critical value, increasing the contact
angle results in a larger first-detached portion. At a fixed contact angle, increasing
the capillary number results in an increase of the size of the first detached droplet for
θ =78◦ and θ = 90◦, but a decrease for θ = 118◦. It is also found that the droplet is
stretched longer as the capillary number becomes larger. For a detaching droplet, the
maximal velocity value occurs near the bottleneck between the up- and downstream
parts of the droplet and the shear stress there reaches a local maximum. The three-
dimensional effects are most clearly seen for θ =90◦, where the wetted length and
wetted area vary in the opposite direction and the shape of the interface between the
wall and the droplet is distorted severely from the original round shape.

1. Introduction
The displacement of immiscible fluids is an important phenomenon for a wide

range of engineering applications, including oil recovery, transport of non-aqueous-
phase liquid contamination in the soil, and geologic sequestration of carbon dioxide.
Immiscible displacement in capillary tubes is a moving contact-line problem, which
challenges the classical hydrodynamic methods and has attracted the attention of
many investigators (e.g. Dussan V. & Davis 1974; Dussan V. 1976, 1979; Hocking
1976, 1977; de Gennes 1985; Jansons 1985; Cox 1986; Koplik, Banavar & Willemsen
1988; Zhou & Sheng 1990; Shikhmurzaev 1997; Chen, Jasnow & Vinals 2000; Jacqmin
2000; Freund 2003; Briant, Wagner & Yeomans 2004; Briant & Yeomans 2004). Even
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though it has been shown that the no-slip boundary condition and the moving contact
line are kinematically compatible (Dussan V. & Davis 1974), the theoretical analyses
of such a liquid/liquid/solid system on the basis of the classical approach, with a
sharp interface and a no-slip boundary condition, lead to a non-integrable stress
singularity at the contact line.

To remove the singularity, the model of the fluids must be altered. One obvious
way is to relieve the no-slip boundary condition (Dussan V. 1979). It has been pointed
out that the selection of slip boundary conditions is endless. Although the flow field
very close to the contact line was different for different models, they were identical
when examined on a length scale that characterized the overall geometry of the
fluids (Dussan V. 1979), meaning that no macroscopic measurement can be used to
infer microscopic properties. More recent studies (Chen et al. 2000; Jacqmin 2000;
Briant et al. 2004; Briant & Yeomans 2004) have provided alternative explanations of
contact line motion which do not rely on the breakdown of the no-slip condition and
have shown that effective slip of the interface relative to the wall may be generated by
mechanisms missing from sharp interface treatments. In these studies, the fluid–fluid
interface is not a material line and can be moved diffusively as well as by advection.
As a result, the moving contact line can exist, at least mathematically, even with strict
no-slip conditions for the velocity. The velocity fields obtained from these studies
have the same outer behaviour, but different inner behaviours and physics as those
of the classical studies.

The method Briant et al. (2004) and Briant & Yeomans (2004) used is a lattice
Boltzmann (LB) multiphase multicomponent model. The LB method is a relatively
new numerical method in computational fluid dynamics. Because it is based on
microscopic models and mesoscopic kinetic equations, it has the advantage in
the study of fluid–flow applications involving interfacial dynamics and complex
boundaries (Chen & Doolen 1998). There are rigorous mathematical derivations of
the Navier–Stokes equations from LB equations in the nearly incompressible limit
(Chen, Chen & Matthaeus 1992). Also available in the literature are grid convergence
tests (He et al. 1999b) and successful applications to flow in porous media, turbulence,
multiphase and multicomponent flows, particle suspensions in fluids, heat transfer and
chemical reaction (see Chen & Doolen 1998 for a review).

The bounce-back condition at the solid boundary in the LB method has been
shown to recover the no-slip velocity condition in the limit of small Knudsen number
(Wolfram 1986; Nie, Doolen & Chen 2002). Because of the kinetic nature of the
LB equations and bounce-back condition, there is no such singularity in the LB
simulation of moving contact-line problems while the no-slip condition is satisfied.
Moreover, since this method does not follow each particle as molecular dynamics
simulations, it requires significantly less computer time. Grubert & Yeomans (1999)
have used a binary LB approach to measure contact angles of small droplets. Briant
and colleagues have used an LB model to simulate contact line motion in both liquid–
gas systems (Briant et al. 2004) and binary fluids (Briant & Yeomans 2004). They
find, in agreement with Jacqmin (2000) and Chen et al. (2000), a slip mechanism: the
relative diffusion of the two fluid components in the vicinity of the contact line. This
diffusive transport of fluid can lead to effective slip of the interface of finite width at
the contact line.

The objective of this study is to apply another LB multiphase multicomponent
model to the problem of the moving contact line, to gain new perspectives on solutions
offered in the literature. Among other problems, the displacement of an immiscible
droplet adhering to a wall in a channel under external forces is particularly interesting
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and challenging because there is a coalescence of contact lines when the droplet
detaches from the wall (Schleizer & Bonnecaze 1998; Kang, Zhang & Chen 2002).

Using a boundary-integral method, Schleizer & Bonnecaze (1998) studied the
dynamic behaviour and stability of a two-dimensional immiscible droplet subject
to shear or pressure-driven flow under conditions where inertial and gravitational
forces can be neglected. The droplet is attached to the solid surface, and the two
contact lines are either fixed or mobile. To allow the droplet to slip along the wall,
they applied an integral form of the Navier-slip model. To avoid introducing an
additional phenomenological relationship between the contact angle and the velocity
of the contact line, they assumed that the contact angle is independent of the speed
of the contact line and is therefore equal to its static value. Hence, in their study, only
the limit where there is no contact angle hysteresis is examined. They investigated
the effects of contact angle, capillary number (the ratio of viscous to surface forces),
droplet size and viscosity ratio on the droplet behaviour. Their simulation results
showed that for contact angles less than or equal to 90◦, a stable droplet spreads
along the wall until a steady shape is reached; the droplet then moves along the wall
at a constant velocity. Above a critical capillary number, part of the droplet pinches
off leaving behind a smaller attached droplet.

For contact angles greater than 90◦, the wetted length between a stable droplet and
the wall decreases until a steady shape is reached. They also claimed that above a
critical capillary number, the droplet completely detaches for a contact angle of 120◦.
However, they indicated that it was too difficult to include the coalescence of the
contact lines in their numerical method.

In a previous study by Kang et al. (2002), we used an LB multiphase model to study
the displacement of a two-dimensional immiscible droplet subject to gravitational
forces in a channel. We assessed the effects of the contact angle, Bond number (the
ratio of gravitational to surface forces), droplet size and the density and viscosity
ratios of the droplet to the displacing fluid. Our simulation results indicated that
there exists a critical Bond number for a given static contact angle, above which no
steadily sliding droplet is observed. The value of the critical Bond number decreases
as the contact angle increases. At a Bond number above the critical value, increasing
the contact angle results in a larger fraction of the droplet being entrained in the
bulk. Most of our results are in line with the simulation results and the assertion by
Schleizer & Bonnecaze (1998).

Although the diffusive interface of finite width can overcome the contact-line
singularity and gives the same macroscopic droplet behaviour as a slip boundary
condition, it cannot pinpoint the physically relevant mechanism in the vicinity of
the contact line, which may well be system dependent. For that purpose, nanoscale
experiments or extremely large molecular dynamics simulations will be required. In
addition, the finite interface width makes it difficult to pinpoint the accurate position
of the interface. In the previous study, we set the interface at the place where the two
fluids have equal number density.

In this study, we use the same method to investigate the dynamic behaviour of a
three-dimensional immiscible droplet in a duct. It is the first study on this subject to
our best knowledge. In § 2, the multiphase or multicomponent LB model is reviewed.
In § 3, the details of the simulation set-up and the boundary and initial conditions
are presented. In § § 4 and 5, the effects of contact angle and capillary number are
discussed, respectively. The results are summarized in § 6. All figures except figure 1
are plotted using Tecplot. By using bilinear interpolation, it gives smooth contour
lines and surfaces for two- and three-dimensional spaces, respectively.
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2. Model and theory
There are several LB models used for the study of multiphase and/or multi-

component flow. Gunstensen et al. (1991) developed a multicomponent LB model
based on a two-component lattice gas model. Shan & Chen (1993) proposed an LB
model with interparticle potential for multiphase and multicomponent fluid flows.
Swift, Osborn & Yeomans (1995) developed an LB multiphase and multicomponent
model by using the free-energy approach. He, Chen & Zhang (1999a) proposed an LB
multiphase model using the kinetic equation for multiphase flow. As in the previous
two-dimensional study, we use the model with interparticle potential because of its
convenience in handling fluid/solid interaction.

For completeness, we first review the multiphase or multicomponent LB model
proposed by Shan & Chen (1993). In their model, k distribution functions are intro-
duced for a fluid mixture of k fluid components. Each distribution function represents
a fluid component and satisfies the evolution equation. The interaction between the
particles is included in the kinetics through a set of potentials. The LB equations for
the kth component can be written in the following form:

f k
i (x + eiδt , t + δt ) − f k

i (x, t) = −f k
i (x, t) − f

k(eq)
i (x, t)

τk

, (2.1)

where f k
i (x, t) is the number density distribution function in the ith velocity direction

for the kth fluid at position x and time t , and δt is the time increment. On the
right-hand side, τk is the relaxation time of the kth component and is in the lattice
unit, and f

k(eq)
i (x, t) is the corresponding equilibrium distribution function. For a

three-dimensional 19-speed LB model (D3Q19, where D is the dimension and Q is
the number of velocity directions), f

k(eq)
i (x, t) has the following form (Chen et al.
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(2.2)

In the above equations, ei are the discrete velocities, which are chosen to be

ei =




(0, 0, 0), i = 0,

(±1, 0, 0), (0, ±1, 0), (0, 0, ±1), i = 1 − 6,

(±1, ±1, 0), (±1, 0, ±1), (0, ±1, ±1), i = 7 − 18,

(2.3)

and dk is a free parameter, which relates to the sound speed of a region of pure kth
component as (ck

s )
2 = (1 − dk)/2; nk =

∑
i f

k
i is the number density of the kth com-

ponent. The mass density of the kth component ρk is defined as ρk = mknk = mk

∑
i f

k
i ,

and the fluid velocity of the kth fluid uk is defined through ρkuk = mk

∑
i eif

k
i , where

mk is the molecular mass of the kth component. The parameter ueq
k is determined by

the relation,

ρkueq
k = ρku′ + τk Fk, (2.4)

where u′ is a common velocity on top of which an extra component-specific velocity
due to interparticle interaction is added for each component, and Fk = F1k+F2k+F3k
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is the total force acting on the kth component, including fluid/fluid interaction F1k ,
fluid/solid interaction F2k , and external force F3k (Martys & Chen 1996). To conserve
momentum at each collision in the absence of interaction (i.e. in the case of Fk = 0),
u′ has to satisfy the relation,

u′ =

(
s∑

k=1

ρkuk

τk

)/(
s∑

k=1

ρk

τk

)
. (2.5)

The interactive force between particles of the kth component at site x and the k̄th
component at site x ′ is assumed to be proportional to the product of their ‘effective
number density’ ψk(nk), defined as a function of local number density. The total
fluid/fluid interactive force on the kth component at site x is

F1k(x) = −ψk(x)
∑

x′

s∑
k̄=1

Gkk̄(x, x′)ψk̄(x
′)(x ′ − x), (2.6)

where Gkk̄(x, x′) satisfies Gkk̄(x, x′) = Gkk̄(x
′, x), and ψk(x) is a function of x through

its dependency on nk . The above form of interaction potential was originally used for
single-speed lattices such as the two-dimensional hexagonal and the four-dimensional
face-centred hypercubic lattice (FCHC) (Shan & Chen 1993), and only homogeneous
isotropic interactions between the nearest neighbours were considered. The interaction
potential of the D3Q19 lattice can be obtained with a method adopted by Martys &
Chen (1996) to project the interaction potential from the four-dimensional FCHC
lattice to the D3Q19 model. The nearest-neighbour interaction in four dimensions
corresponds to a potential that couples nearest and next-nearest neighbours in the
D3Q19 lattice model. In this case,

Gkk̄(x, x′) =




gkk̄, |x − x ′| = 1,

gkk̄/2, |x − x ′| =
√

2,

0, otherwise.

(2.7)

Here, gkk̄ is the strength of the interparticle potential between component k and k̄.
The effective number density ψk(nk) is taken as nk in this study. Other choices will
give a different equation of state.

At the fluid/solid interface, the wall is regarded as a phase with a constant number
density. The interactive force between the fluid and wall is described as

F2k(x) = −nk(x)
∑

x′

gkwnw(x ′)(x ′ − x), (2.8)

where nw is the number density of the wall, which is a constant at the wall and zero
elsewhere, and gkw is the interactive strength between component k and the wall.
The interactive strength gkw is positive for a non-wetting fluid and negative for a
wetting fluid. By adjusting it, we can obtain different wettabilities. Note that F2k is
perpendicular to the wall and will not affect the no-slip boundary condition.

The action of a constant-body force can be simply introduced as

F3k = ρk g = mknk g, (2.9)

where g is the body force per unit mass.
The Chapman–Enskog expansion procedure can be carried out to obtain the

following continuity and momentum equations for the fluid mixture as a single fluid
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in the nearly incompressible limit (Shan & Doolen 1996):

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.10)

ρ

[
∂u
∂t

+ (u · ∇)u
]

= −∇p + ∇ · [ρν(∇u + (∇u)�)] + ρg, (2.11)

where ρ =
∑

k ρk is the total density of the fluid mixture, and the whole fluid velocity
u is defined by ρu =

∑
k ρkuk +

∑
k Fk/2 (Shan & Doolen 1995). The pressure is

given by p =
∑

k(1 − dk)mknk/2 + 3
∑

k,k̄ gkk̄ψkψk̄ , which is generally a non-ideal gas
equation of state (Shan & Doolen 1996).

To simulate a multiple component fluid with different component densities, it is
appropriate to let (1 − dk)mk be a constant. In this study, the different components
have the same density. We let mk = 1 and dk = 1/3, which is commonly used in the
literature. Then the equation of state can be written as p =

∑
k nk/3+3

∑
k,k̄ gkk̄ψkψk̄ .

The viscosity is given by ν = (
∑

k βkτk − 1/2)/3, where βk is the mass density
concentration of the kth component and is defined as ρk/

∑
k ρk (Hou et al. 1997).

Notice that the introduction of fluid/solid interaction has no effect on the macroscopic
equations since F2k exists only at the fluid/solid interface.

This model has been shown to satisfy Galilean invariance (Shan & Doolen 1995).
In addition to its convenience in handling fluid/solid interaction, it is also convenient
for handling fluids with different densities and viscosities. Although this model does
not conserve the net momentum at each site, which is physically plausible because the
distant pairwise interactions between phases change the point-wise local momenta at
the positions involved in the interactions (Chen & Doolen 1998), the total momentum
of the system obtained by summing over the net momenta at every site is still exactly
conserved (Shan & Chen 1993). This feature is different from a previous LB multiphase
model (Gunstensen et al. 1991) where the total local momentum is conserved. It is
arguable that this unnecessary conservation might be one reason why that model ex-
hibits unphysical features near interfaces (Chen & Doolen 1998). Furthermore, in the
model with interparticle potential, the separation of a two-phase fluid into its com-
ponents is automatic (Chen & Doolen 1998). Hence, in simulating the displacement
of the immiscible droplet with this model, there is no need to track the interface,
nor need we make any assumption about the relationship between the contact angle
and velocity of the contact line. Also, the coalescence of the contact lines can be
demonstrated more easily.

One disadvantage of this LB multiphase/multicomponent model is that although
expressions for the surface tension of a single component liquid/gas fluid exist, the
surface tension of a multicomponent fluid must be found through simulation. This
creates difficulties in applications in which an adjustable surface tension is required
(He & Doolen 2002). The difficulties can be relieved by the finding that the dependence
of the surface tension on gkk̄ is nearly linear (Yang et al. 2000).

3. Simulation set-up
The three-dimensional geometry used in our simulations is shown in figure 1, where

an immiscible droplet (fluid 2) with volume V is placed into a three-dimensional duct
filled with fluid 1. The length of the duct is l, its width is w in the x-direction and
h in the y-direction. A0 is the wetted area between the droplet and the wall; b0 is
the wetted length in the z-direction; a0 is the droplet height; and θ1 and θ2 are the
contact angles of fluids 1 and 2, respectively. The contact angle is defined as the
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(a) (b)
h w

θ1

θ2

a0

b0

l l

A0

Figure 1. Schematic of simulation geometry: (a) (y, z)-plane view, (b) (x, z)-plane view.

(a) (b) (c)

Figure 2. Three static contact angles obtained by adjusting g2w: (a) g2w = −0.02, θ = 78◦,
(b) g2w = 0, θ = 90◦, (c) g2w = 0.05, θ = 118◦.

angle between a two-fluid interface and a solid surface. As shown in figure 1, each
fluid has its own contact angle and the sum of the two must equal 180◦. The wetting
fluid (the fluid that tends to wet the surface) has a contact angle of less than 90◦,
and the non-wetting fluid (the fluid that has less affinity for the solid surface) has
a contact angle of greater than 90◦. In all simulations below, l = 300, h = 40 and
w = 80, all in lattice unit spacings, V/h3 = 0.2, ρ2/ρ1 = 1, τ1 = τ2 = 1, g1w = −g2w ,
g11 = g22 = 0 and g12 = g21 = 0.1. In this study, we consider only the two-fluid system
with equal density and viscosity, though this method is equally applicable to systems
with different densities and viscosities (Kang et al. 2002). Bounce-back boundary
conditions are imposed at walls and periodic boundary conditions are applied at
z = 0 and z = l. The flow is induced by a constant body force along the −z-direction.

The static contact angle can be reasonably well predicted by equation (2.8)
(Martys & Chen 1996; Kang et al. 2002). In the simulation of the static contact
angle, no body force is applied. Initially, b0 = 2a0 = 2R. When a static droplet is
obtained, the values of a0 and b0 are measured, and R and θ are calculated. The
values of g1w and g2w are varied to obtain static droplets with different contact angles.
As shown in figure 2, contact angles θ2 = 78◦, 90◦ and 118◦ are obtained by letting
g2w equal −0.02, 0 and 0.05, respectively. For simplicity, hereinafter we refer to θ2

when we say contact angle or θ .
After a static droplet is achieved at time zero, a constant body force (gravitational

force) is applied to both the displacing fluid and the droplet along the −z-direction.
In order to compare with the two-dimensional simulations, we define U = ρ1gh2/µ1



48 Q. Kang, D. Zhang and S. Chen

1.2

1.0

0.8

b
b0 0.6

0.4

0.2

0 20 40
Time

60 80

(a)
1.2

1.0

0.8

0.6

0.4

0.2

0 20 40
Time

60 80

(b)

A
A0

Figure 3. Evolution of the dimensionless wetted length b/b0 and wetted area A/A0 between
the wall and the sliding droplet at three contact angles (—, θ = 78◦; - - -, 90◦; - · - 118◦) and
at Ca = 0.35, where b0 and A0 are the wetted length and wetted area at time 0, respectively.
Time is made dimensionless by characteristic time l/U : (a) evolution of b/b0, (b) evolution of
A/A0.
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Figure 4. As figure 3, but for Ca = 0.50.

as the characteristic velocity, and l/U as the characteristic time, where ρ1 and µ1 are
the density and viscosity of fluid 1, respectively. The capillary number is defined as
Ca = (µ1U/σ )(V/h3) = ρ1gV/σh, where g is the gravitational factor and σ is the
surface tension, which is calculated using Laplace’s law in bubble tests (see Kang et al.
2002 for details). The capillary number is a dimensionless parameter that indicates
the ratio of viscous force to interfacial force.

4. Effect of contact angle
Figures 3–6 show the time evolution of the dimensionless wetted length b/b0 and

wetted area A/A0 between the wall and the sliding droplet at three contact angles
(θ = 78◦, 90◦ and 118◦) and at four capillary numbers (0.35, 0.50, 0.66 and 0.81).
Different capillary numbers are obtained by changing g, the gravitational factor. For
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Figure 5. As figure 3, but for Ca = 0.66.
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Figure 6. As figure 3, but for Ca = 0.81.

a given g, we calculate the capillary number by Ca = ρ1gV/σh and keep two decimal
digits. The capillary number can also be changed by changing the droplet size or
the surface tension, but changing the gravitational factor is the most convenient way.
Figures 7–10 are the three-dimensional views of dynamical behaviour of the droplet
at these three contact angles and different capillary numbers.

At the capillary number of 0.35 (figure 3), for θ = 78◦ (wetting case), both wetted
length (b/b0) and wetted area (A/A0) increase with time at first, then decrease slowly
and reach a steady-state value. For θ = 90◦, b/b0 increases with time at first, then
decreases, while A/A0 decreases with time monotonically before it reaches a steady-
state value. Here, the steady state is claimed to be reached when the wetted length
between the droplet and wall varies less than 0.2 % in 1000 successive time steps.
Reducing the criteria to 0.1 % does not produce a significant change in the steady
shape of the droplet. For the case of θ = 118◦ (non-wetting case), both b/b0 and
A/A0 dramatically decrease with time and reaches 0 at time 7.8, when the droplet
totally detaches from the wall, as shown in figure 7. In this non-wetting case, the
capillary number already exceeds a critical value called the critical capillary number
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t = 0 1.7 3.5 5.2 6.9 8.6

Figure 7. Dynamic behaviour of the non-wetting droplet (θ = 118◦) at Ca = 0.35
(three-dimensional view), the entire droplet detaches from the wall.

t = 0 4.2(a)

(b)

8.3 12.5 16.6 20.8

t = 0 2.1 4.2 6.2 8.3 10.4

Figure 8. Dynamic behaviour of the droplet at Ca = 0.50 (three-dimensional view): (a) θ =
90◦, (b) θ = 118◦. Part of the droplet pinches off for both cases. In (a), the detached portion
re-enters the system owing to the periodic conditions applied along the z-direction.
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t = 0(a)

(b)

(c)

4.4 8.7 3.1 17.4 21.8

t = 0 3.8 7.6 11.4 15.2 19.0

t = 0 2.2 4.4 6.5 8.7 10.9

Figure 9. Dynamic behaviour of the droplet at Ca= 0.66 (three-dimensional view), corres-
ponding to figure 5: (a) θ = 78◦, a small portion of the droplet pinches off from the rest,
(b) θ = 90◦, two small droplets pinch off from the rest in tandem, (c) θ = 118◦, a large portion
of the droplet pinches off, and the rest detaches from the wall.
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t = 0(a)

(b)

(c)

4.7 9.4 14.1 18.8 23.5

t = 0 4.7 9.4 14.1 18.8 23.5

t = 0 2.7 5.4 8.1 10.8 13.4

Figure 10. Dynamic behaviour of the droplet at Ca = 0.81 (three-dimensional view), cor-
responding to figure 6: (a) θ = 78◦, two small droplets pinch off from the rest in tandem,
(b) θ = 90◦, a number of small droplets break from the original droplet and are entrained into
the bulk fluid, (c) θ = 118◦, a large portion of the droplet pinches off, and the rest detaches
from the wall.

(Cac), below which a sliding droplet with a constant shape may be observed, and
above which no steadily sliding droplet will be obtained. This result is in line with
the two-dimensional simulation.



Displacement of a droplet 53

At the capillary number of 0.50 (figure 4), for the wetting case, both b/b0 and A/A0

vary similarly as they do at the capillary number of 0.35, but with larger magnitude.
For θ = 90◦, the wetted length increases continuously before a portion of the droplet
pinches off and is entrained into the bulk flow, as shown in figure 8(a). Then, the
wetted length begins to decrease. The wetted area, however, decreases monotonically
all the time. This change of wetted length at a capillary number above the critical
value is different from the results of the two-dimensional simulations, which show that
the droplet spreads along the wall at first and then shrinks, and that the downstream
part of the droplet pinches off when the droplet is shrinking. For the non-wetting
case, both wetted length and wetted area quickly decrease with time before a large
portion of the droplet is entrained into the displacing fluid. The rest of the droplet is
still attached to the wall (see figure 8b). Therefore, the wetted length and wetted area
will not reach zero.

Since the capillary number of 0.66 (figure 5) is greater than the critical capillary
number of all three cases, no steadily sliding droplet is observed. However, the droplet
with different static contact angles behaves very differently (see figure 9). For θ = 78◦,
the wetted length increases continuously and a small portion of the droplet breaks
off at its peak value. Then the wetted length begins to decrease. The wetted area,
however, increases monotonically all the time. For θ = 90◦, the wetted length increases
monotonically. The wetted area first increases slightly and then decreases steadily
before it becomes stable. A larger portion pinches off at time 15.6 and a smaller one at
time 18.8. For θ = 118◦, both b/b0 and A/A0 steadily decrease with time and reach 0 at
time 11. However, the droplet does not detach from the wall as a whole, as in the case
of capillary number 0.35. Instead, a larger portion pinches off first, as in the case of
capillary number 0.50, and the rest detaches from the wall subsequently (see figure 9c).

As the capillary number further increases to 0.81 (figure 6), the wetted length grows
monotonically for the wetting droplet, while the wetted area goes up and down. Two
small droplets pinch off from the original droplet in tandem, as shown in figure 10(a).
The first detachment corresponds to a local minimum of the wetted area. For θ = 90◦,
both b/b0 and A/A0 change similarly to the way they do at capillary number 0.66.
However, as shown in figure 10(b), a number of small droplets break from the original
droplet and are entrained into the bulk flow. The non-wetting droplet behaves similarly
to the way it does at capillary number 0.66: a larger portion pinches off first, and
then the rest detaches from the wall, as shown in figure 10(c).

When the first portion pinches off, the rest of the droplet has a smaller size and
hence, a smaller capillary number. We may expect it to recover to the behaviour of
the droplet with the same contact angle and at a reduced capillary number. However,
because their initial conditions are different, the behaviour of the remaining portion
should depend greatly on the process. Let us take the non-wetting displacement as
an example, for the capillary numbers 0.66 and 0.81, the remaining portion detaches
from the wall in both cases. However, it may not detach from the wall if it starts
moving from a static droplet under the same strength of gravity.

In general, the wetted length and wetted area change in the same direction for θ =
78◦ and θ = 118◦, but in the opposite direction for θ = 90◦, as shown in figures 3–6.

Figure 11 is the (x, z)-plane view of the dynamical behaviour of the droplet at
the three contact angles and at capillary number 0.66. The (x, z)-plane is at the
wall where y = 0. From this figure, we can see the shape of the fluid/solid interface
between the droplet and the wall at different time steps. For θ = 78◦, both wetted
length and wetted area increase with time, as shown more clearly in figure 5, but the
normalized wetted length is always greater than the normalized wetted area. As a
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t = 0 4.4 8.7 13.1 17.4 21.8

t = 0 3.8 7.6 11.4 15.2 19.0

t = 0 2.2 4.4 6.5 8.7 10.9

(a)

(b)

(c)

Figure 11. Dynamic behaviour of the droplet at Ca =0.66 ((x, z)-plane view):
(a) θ = 78◦, (b) θ = 90◦, (c) θ = 118◦.

result, the wetted width (in the x-direction) decreases. For θ = 90◦, the wetted length
increases while the wetted area decreases, as shown in figure 5. Therefore, the wetted
width decreases more to compensate. In both cases, the shape of the interface is
distorted severely. For θ = 118◦, both wetted length and wetted area decrease, and so
does the wetted width in the x-direction. The round shape of the interface remains
almost unchanged when the wetted area diminishes.
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Ca= 0.35 Ca= 0.50 Ca= 0.66 Ca= 0.81

θ = 78◦ 0.256 0.341
θ = 90◦ 0.543 0.574 0.577
θ = 118◦ 1.0 0.988 0.977 0.973

Table 1. The volume ratio of the first detached droplet to the whole droplet.

From figures 9 and 10, or from table 1, we can see that at a certain capillary
number, the size of the first detached droplet is largest for θ = 118◦ and smallest for
θ = 78◦. This result confirms the conclusion obtained in our two-dimensional simula-
tion and the assertion by Schleizer & Bonnecaze (1998) that increasing the contact
angle results in a larger fraction of the droplet being entrained in the bulk. We can
also see from table 1 that increasing the capillary number results in an increase of
the size of the first detached droplet for θ = 78◦ and θ = 90◦, but in a decrease for
θ = 118◦.

Figure 12 shows the velocity fields of the detaching process in an (y, z)-plane. This
plane is the symmetrical plane where x = 40. Note that the no-slip boundary condition
is satisfied well at the wall. We can see that when θ = 78◦ and 90◦, the velocity inside
the downstream part of the droplet is larger than that inside the upstream part, which
causes the downstream part to translate more rapidly and eventually pinch off from
the upstream part. When θ = 118◦, however, the velocity inside the droplet is almost
uniform and larger than that of fluid 1 near the wall. That means the shear forces
between the droplet and the wall are very large and eventually cause the entire droplet
to detach from the wall.

Figure 13 shows the velocity field in the symmetrical plane and relative to the
average droplet velocity when the droplet is steadily sliding. It reveals a vortex flow
pattern within the droplet itself in this plane, which is very similar to that obtained
in two-dimensional simulations by Kang et al. (2002) and by Grubert & Yeomans
(1999).

Figure 14 shows the dependence of the critical capillary number on the static
contact angle. For each contact angle, a large number of simulations are required to
find the critical value of the body force through interpolation. Therefore, we calculate
the critical capillary number for only five contact angles because of the extensive
computational efforts. However, it is sufficient to confirm the general trend found
in the two-dimensional study (Kang et al. 2002) that the critical capillary number
decreases as the contact angle increases.

There is a family of gkk̄ and gkw terms that give the same contact angle. In a simula-
tion not shown here, we increased g12 , but kept g11 = g22 = 0 (hence the contact
angle is fixed at 90◦). As a result, the surface tension increases, and so does the body
force strength required for detachment. Thus, the critical capillary number remains
nearly unchanged, and the droplet behaves very similarly. However, the interface
width decreases as the increase of g12, and how this width affects the dynamics of
flow near the moving contact line requires further scrutiny.

5. Effect of capillary number
Figures 15 and 16 illustrate the dependency of the steady-state value of the non-

dimensional wetted length b/b0 and wetted area A/A0 on the capillary number Ca,
respectively. Different capillary numbers are obtained by changing g, the gravitational
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t = 17.4
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(b)

(c)
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19. 118. 718. 3t = 17.5 19. 9

7.56.3 7.26.9t = 5.7

Figure 12. Velocity fields of the detaching process in the symmetrical plane x = 40:
(a) θ = 78◦ and Ca = 0.66, (b) θ = 90◦ and Ca = 0.50, (c) θ = 118◦ and Ca = 0.35.
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(a) (b) (c)

Figure 13. Velocity profile within the droplet minus average droplet velocity: (a) θ = 78◦

at Ca = 0.62, (b) θ = 90◦ at Ca = 0.46, (c) θ = 118◦ at Ca = 0.15.
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Figure 14. Dependency of the critical capillary number (Cac) on the contact angle (θ ).

Ca

b—
b0

0 0.2 0.4 0.6
0.8

1.2

1.6

2.0

2.4

2.8

θ = 78°
θ = 90°
θ = 118°

Figure 15. Dependency of the steady-state wetted length between the droplet and the wall
on the capillary number.
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Figure 16. Dependency of the steady-state wetted area between the droplet and
the wall on the capillary number.
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Figure 17. Dependency of the steady-state contact-line velocity on the capillary number.

factor. For θ = 78◦ and θ = 90◦, and when Ca is small, b/b0 remains at 1 while
A/A0 decreases with the increase of Ca. As Ca increases further, both b/b0 and
A/A0 increase. The increase of b/b0 is greater in magnitude than its two-dimensional
counterpart, because the wetted width (in x-direction) of the three-dimensional droplet
can decrease to compensate. For the non-wetting droplet, both b/b0 and A/A0 decrease
with time monotonically until Ca exceeds the critical value.

Figure 17 shows the dependency of the steady-state value of the dimensionless
contact-line velocity µVcl/σ (or the droplet velocity, since the shape of the droplet
does not change with time any more) on the capillary number. For θ = 90◦ or θ =118◦,
this velocity is linear in Ca, meaning that the droplet translates more rapidly as Ca
increases. The slope for θ = 90◦ is smaller than that for θ = 118◦. For the wetting
case, however, there are two regions where the contact-line velocity varies linearly.
The transition between these regions is about 0.39 � Ca � 0.50, which corresponds to
the region where both b/b0 and A/A0 increase rapidly, as seen in figures 15 and 16,
and thus corresponds to the region where the droplet shape changes significantly, as
seen in figures 18(a) and 19(a). Figures 18 and 19 are the (x, z)- and (y, z)-plane views
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Ca = 0 0.12 0.23 0.31 0.39

Ca = 0.43 0.46 0.50 0.54 0.62

Ca = 0 0.12 0.23 0.35 0.46

Ca = 0
(c)
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(a)

0.04 0.08 0.12 0.15

Figure 18. The steady-state shape of the droplet at different capillary numbers
((x, z)-plane view at wall): (a) θ = 78◦, (b) θ = 90◦, (c) θ = 118◦.

of the steady-state shape of the droplet at different capillary numbers, respectively.
From figure 18, we can see that the interface between the non-wetting droplet and the
wall keeps its round shape. For the other two contact angles, however, the interface
deviates from its original round shape, and the larger the capillary number, the greater
this deviation. We can also see from figures 18 and 19 that the steady-state shape of
the droplet is greatly stretched from its original static shape, especially for θ = 78◦

and θ = 90◦, and the larger the capillary number, the greater the stretch.
Since no assumption about the relationship between the contact angle and velocity

of the contact line is required in our study, the steady-state shapes of the droplets
(see figure 19) look different from those of the droplets in simulations by Schleizer &
Bonnecaze (1998), where the contact angle is assumed to be independent of the speed
of the contact line and equal to its static value. Instead, the droplet shapes here are
similar to those of the static droplets in simulations by Dimitrakopoulos & Higdon
(2001) with contact angle hysteresis.
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Ca = 0 0.12 0.23 0.31 0.39

Ca = 0.43 0.46 0.50 0.62
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Ca = 0 0.04 0.08 0.12 0.15

Figure 19. The steady-state shape of the droplet at different capillary numbers
((y, z)-plane view at x = 40): (a) θ = 78◦, (b) θ = 90◦, (c) θ = 118◦.

Figure 20 shows the time evolution of the bottleneck area at the three contact
angles and different capillary numbers. The bottleneck area is defined as the minimal
horizontal area between the up- and downstream parts of the droplet and is
normalized by the initial wetted area. The first and last time instants correspond
to the initial formation of the bottleneck and the final detachment of the downstream
part, respectively. It is clear that this area decreases with time for all contact angles
and capillary numbers shown. For the highest capillary number (Ca =0.81), the
bottleneck area changes with time nearly exponentially for all contact angles. For a
certain contact angle, the decrease of the bottleneck area slows down with time as the
capillary number goes up. In other words, the larger the capillary number, the longer
the time between the initial formation of the bottleneck and the final detachment
of the downstream part of the droplet. This phenomenon implies that at a larger
capillary number, the droplet is stretched farther before it breaks down.
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Figure 20. Time evolution of the normalized bottleneck area: (a) θ = 78◦,
(b) θ = 90◦, (c) θ = 118◦.

This conclusion can be drawn directly from figures 8–10 and can also be confirmed
by figure 21, which shows the time evolution of the normalized mass-centre velocity
of the up- and downstream parts of the droplet, delimited by the bottleneck. The
solid symbols designate the downstream part and the open symbols the upstream
part. The area between them indicates the change of the distance between the mass
centres of the two parts, which is an indication of how much the droplet is stretched.
It is clear that the larger the capillary number is, the farther the droplet is stretched.

We can also see from figure 21 that the mass-centre velocity of the downstream
part increases steadily with time, but that of the upstream part tends to change with
time irregularly as the capillary number or the contact angle increases. One possible
reason for this effect of the contact angle is that as it increases, the volume of the
upstream part becomes smaller and hence more sensitive to the location of the border
between the two parts. One explanation for this effect of the capillary number is that
at a high capillary number, the upstream part may become unstable. This instability
will be the subject of a future study.

Figure 22 shows the velocity vector and speed distribution (normalized by charac-
teristic velocity U = ρ1gh2/µ1) at the droplet surface with θ = 90◦, Ca = 0.66, t =15.2
and Re = 19.05. The Reynolds number is defined as Re = W̄h/ν, where W̄ is the
average velocity along the –z-direction in the whole domain at this time instant. The
red colour indicates the high value of the speed and the blue colour the low value. It
is clear that the speed is generally larger in the downstream part than in the upstream
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Figure 21. Time evolution of the normalized mass-centre velocity of the up- and downstream
parts of the droplet. The solid symbols designate the downstream part and the open symbols
the upstream part. � and �: Ca = 0.50; � and �: Ca = 0.66; � and �: Ca = 0.81:
(a) θ = 78◦, (b) θ = 90◦, (c) θ = 118◦.

part. The maximum speed occurs near the bottleneck rather than at the far end of
the downstream part. The reason is that the droplet is quickly stretched and hence
the velocity is very large near the bottleneck.

Figure 23 shows the distribution of the shear stress τyz (normalized by ρ1U
2,

where U is the characteristic velocity) in the vicinity of the droplet. The shear stress
is calculated based on the constitutive assumption for Newtonian fluids (i.e. τyz =
µ((∂uz/∂y) + (∂uy/∂z)), where µ is the dynamic viscosity, and uy and uz are velocity
components in the y- and z-directions, respectively), although the fluid mixture near
the fluid/fluid interface would probably be non-Newtonian owing to the finite interface
thickness (Dussan V. & Davis 1974). The velocity derivatives in the expression of τyz

are calculated using second-order finite-difference methods. The negative peak is at the
advancing contact line, which is consistent with the result of the atomistic simulation
of flow in the vicinity of the advancing and receding solid–liquid–vapour contact
lines of a two-dimensional (in the mean) liquid drop, which is in thermodynamic
equilibrium with its own vapour and moves steadily owing to an applied body force
(Freund 2003). The absolute value of the negative peak in our study is about three
times that of the positive peak, which occurs at the other wall (y = 40).
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Figure 22. (a) Velocity vector and speed distribution at the droplet surface with θ = 90◦,
Ca = 0.66 t = 15.2 and Re = 19.05. (b) The same as (a), but in different view angle.
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Figure 23. Distribution of the shear stress τyz in the vicinity of the droplet with θ = 90◦,
Ca = 0.66, t = 15.2 and Re = 19.05: (a) in the (y, z)-plane at x = 40, (b) in the (x, z)-plane at
the wall.

It is also seen from figure 23(a) that at the bottleneck where the velocity peaks,
both the negative shear stress at the left of the bottleneck and its positive counterpart
at the right reach their local maxima. This indicates that the droplet at the bottleneck
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is undergoing very large stretch, which results in the eventual break of the bottleneck
and therefore the detachment of the downstream part of the droplet.

6. Conclusions
We have simulated the displacement of a three-dimensional immiscible droplet of

various wettabilities in a duct by the lattice Boltzmann method. The driving force is
the gravitational forces. It has been found that there exists a critical capillary number,
under which the droplet would move along the wall and reach a steady state.

At a capillary number just above the critical value, a small portion would pinch
off from the rest of the droplet for θ = 78◦ and a large portion for θ = 90◦. The rest
would still attach to the wall. For θ = 118◦, however, the entire droplet would detach
from the wall. When the capillary number further increased, more than one small
droplet would pinch off for θ = 78◦ and θ = 90◦, and the rest would still adhere to
the wall. For the non-wetting droplet, however, a large portion would break off first
and the rest would detach from the wall if the capillary number was large enough. In
a previous two-dimensional simulation, we did not increase the capillary number so
much after it exceeded the critical value so that we observed only the first detachment.

At a fixed capillary number above the critical value, increasing the contact
angle resulted in a larger first-detached droplet, which also agreed with the two-
dimensional study. The current study also confirmed the general trend found in the
two-dimensional study that the critical capillary number decreased as the contact
angle increased.

In the detaching process, the wetted length and wetted area varied in the opposite
direction for the droplet with θ = 90◦, and hence the wetted shape was distorted
most. For the droplet with θ =118◦, both wetted length and wetted area decreased
and the round shape of the fluid/solid interface remained almost unchanged when
the wetted area diminished.

In the non-wetting displacement, both the steady-state wetted length and wetted
area decreased monotonically and the steady-state velocity of the contact lines
increased linearly as the capillary number increased. For the case of a contact angle
less than or equal to 90◦, the situation was more complicated. The steady-state wetted
length and wetted area remained unchanged or decreased at first, and then both
increased as the capillary number increased. When θ = 90◦, the steady-state velocity
of the contact lines also increased linearly with the increase of the capillary number,
but with a smaller slope than when θ = 118◦. When θ = 78◦, however, the steady-state
contact-line velocity varied linearly in two regions. The transition between the two re-
gions corresponded to the region where there was a great change in the droplet shape.

When θ = 118◦, the steady-state interface between the droplet and the wall kept
its round shape. For the other two cases, however, the interface deviated from the
original circular shape as the capillary number increased.

A displaced droplet was stretched longer when the capillary number was larger.
When part of the droplet was detaching, the maximal value of the velocity at
the fluid/fluid interface occurred near the bottleneck instead of the far end of the
downstream droplet, and the shear stress at the bottleneck reaches a local maximum.

The stability of the droplet and the distribution of stress and strain in the detaching
process constitute topics for our future work.
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